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Abstract. In this paper, we investigate the entanglement of a two-spin system with Heisenberg exchange
interaction in a quantized field. The pairwise entanglement between bipartite subsystems is obtained. It is
shown that the entanglement exhibits a quantum phase transition due to the variation of exchang coupling.
Phase diagrams are obtained explicitly. The analogy of the quantum phase transition compared to the case
under a classical field are addressed.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bells inequalities, GHZ
states, etc.) – 75.10.Jm Quantized spin models – 03.67.Lx Quantum computation

1 Introduction

Entanglement is a correlation of quantum nature present-
ing in quantum systems exclusively. It plays a central role
in quantum information and computation [1] and recently
has been considered as an important resource of quan-
tum information manipulation [2]. Therefore, one of the
main tasks of quantum information theory is to quantify
the entanglement and the quantum correlations between
quantum states [3–6].

The spin system with Heisenberg exchange interac-
tion is a typical quantum system and the entanglement
properties associated with it have been extensively inves-
tigated recently [7–13]. The entanglement of Heisenberg
spin system driven by external fields has been studied to
date mainly in a semi-classical context, in which the field
is treated classically, in the research literature. However,
many effects in quantum optics (i.e., quantum jumps, col-
lapses and revivals of the Rabi oscillations) can be ex-
plained only with a complete description involving field
quantization [14]. Moreover, in quantum mechanics, sev-
eral interesting effects, such as spontaneous emission and
Lamb shift, are observed due to the interaction of quan-
tum systems with the vacuum in the full quantum the-
ory [15]. This vacuum effect can be explained by the full-
quantized theory only. Recently, studies on the quantum
peculiarity of spin system with a quantized external field
attract extensive attention in quantum theory community.
For example, Fuentes-Guridi et al. [16], Carollo et al. [17]

a e-mail: hemm@sxu.edu.cn

and Wang et al. [18] have demonstrated the effect of a
driven field quantization on the geometric phase in spin
systems.

It is an interesting quantum phenomenon that the
entanglement shares many features with quantum phase
transition (QPT) ([19–26], and references therein). QPTs
in an interactive many-body system are the structural
changes in the properties of the ground state. They oc-
cur at zero temperature and, thus, are purely driven by
quantum fluctuations. The associated level crossings, in
many cases, lead to the presence of non-analyticities in the
energy spectrum. Therefore, the knowledge about the en-
tanglement, the nonlocal correlation in quantum systems,
is believed as the key to understand QPTs [19]. In other
words, fully understanding of the multipartite entangle-
ment does a great help to explain the global correlation
in QPTs.

Identification of the characteristic of a bipartite sys-
tem, the simplest many-body model, is of great scientific
interests and such simple system provides us new paths
to explore the secrets of QPTs without the difficulties en-
countered for other QPT phenomena where more complex
many-body interactions involve, especially when an exter-
nal field presents. In this paper, we investigate the pair-
wise entanglement between two spins under Heisenberg
exchange interactions driven by a quantized external field
and examine the related QPT as well. It is found that, in
the Ising model, when the particle-field coupling is on res-
onance and the coupling constant Ω̧ tends to be zero, the
entanglement appears as a mutation from 1 to 0 which
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indicates that a QPT takes place. In the semi-classical
case, a QPT occurs when the angle of magnetic field
θ = π/2 and field intensity B → 0 [10]. When the particle-
field coupling is out of resonance, a case with more gen-
eral Heisenberg exchange interactions was studied and a
rich structure of the entanglement phase diagrams was
observed.

This paper is organized as the follows: Section 2 is the
definition of the Hamiltonian and the calculation approach
of the pairwise entanglement in a bipartite system. Then,
in Sections 3 and 4, the analytical and numerical results
of the entanglement in the ground state are presented and
discussed, respectively. Finally, we conclude briefly in Sec-
tion 5.

2 Model and theoretical method

The composite system we studied consists of two spins
with Heisenberg exchange interaction under the presence
of a quantized field of one mode. Without the exchange
interaction, this model can be also used to describe a two-
level atom coupled with a single-mode electromagnetic
field via the electric-dipole interaction. In the rotating-
wave approximation (RWA), the Hamiltonian reads

H = νa†a+
ω

2
(σz

1 + σz
2) +Ω[a(σ+

1 + σ+
2 ) + a†(σ−

1 + σ−
2 )]

+ Jxσ
x
1σ

x
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y
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y
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z
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z
2 , (1)

where ω is the transition frequency between the eigen-
states of the spin- 1

2 system (the natural unit � = 1 is used
throughout the paper), ν is the frequency of the field de-
scribed in terms of the creation and annihilation operators
a† and a. Ω is the coupling constant between the field and
particles known as the Rabi frequency. Jx, Jyand Jz are
exchange-coupling constants between two spin- 1

2 particles
and σ±

i = σx
i ± σy

i as σx
i , σy

i and σz
i are common Pauli

spin matrix with subscripts i = 1 and 2 describing two
different spins respectively. All the spin- 1

2 particles are as-
sumed to be coupled to the field with the same coupling
constant. When Jx = Jy = J the Hamiltonian is known
as the XXZ model, while it reduces to the XXX model if
Jz = J (XX model for Jz = 0) and Ising model if J = 0,
Jz �= 0. We set ∆ = ω− ν denoting the detuning. In what

follows, we calculate the entanglement for the case of res-
onance, i.e., ∆ = 0, analytically; with regard to the case
when ∆ �= 0, although there are the analytical solutions
to it, the results in form of graphical figures are presented
instead for clarity and simplification.

Given boson number of the field, the correspond-
ing Hilbert space is spanned by four basic state vectors
|n, ↑1, ↑2〉, |n+ 1, ↑1, ↓2〉, |n+ 1, ↓1, ↑2〉 and |n+ 2, ↓1, ↓2〉
where |n〉 is field quantum state in Fock representation
and |↓〉, |↑〉 describe spin up and down states, respectively.
For simplicity, the four basic state vectors are expressed as
|Φi〉 , i = 1, 2, 3 and 4, and the spin vectors |↑1, ↑2〉, |↑1, ↓2〉,
|↓1, ↑2〉 and |↓1, ↓2〉 are denoted by |φi〉 , i = 1, 2, 3 and 4.
The Hamiltonian of XXZ model can be expressed as

see equation (2) above

For the resonance case (∆ = 0), the eigenvalues of Hamil-
tonian (2), by neglecting the unimportant constant term
ν (n+ 1) in all eigenvalues, are obtained as

E1 = Jz, E2 = −Jz − 2J, E3 = J − ζ, E4 = J + ζ, (3)

with ζ =
√

(Jz − J)2 + 2 (3 + 2n)Ω2 and the correspond-
ing eigenstates are,

|ψi〉 =
4∑

j=1

bi,j |Φj〉 , (4)

where the coefficients bi,j are elements of matrix B,

see equation (5) above

It is straightforward to verify the orthogonal relation that

4∑
k=1

bk,ib
∗
k,j = δi,j . (6)

The standard measure of pairwise entanglement for pure
state of a bipartite system is the Von Neumann entropy
of either of the two subsystems [3]. If the density matrix
ρ12 of a composite system composed of subsystems 1 and
2, the reduced density operator for subsystem 1 is ρ1 =
Tr2 (ρ12), and the entropy of entanglement would be

E (ρ12) = −Tr (ρ1 log2 ρ1) . (7)
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In our case, the density operator of two spins for a given
phonon number n is

ρ12 = Trfield (ρ)
= 〈n| ρ |n〉 + 〈n+ 1| ρ |n+ 1〉 + 〈n+ 2| ρ |n+ 2〉 , (8)

here ρ denotes the density operator of the whole system
consisting of spin and field. Generally speaking, ρ12 is a
mixed state, so we cannot directly use the entropy as a
measure of the entanglement. We introduce the entangle-
ment of formation, which is the common measurement of
entanglement for a mixed state with the general definition
as the minimum average of entanglement of an ensemble
of pure states [6]. There are several specific definitions of
the entanglement of formation in a bipartite system and
here we adopt the Wootters’s Concurrence [6], which is
defined by

C = max
{
0, 2 max {λi} −

∑
λi

}
, (9)

where λis denote the square roots of the eigenvalues of
matrix R,

R = ρ12 (σy ⊗ σy) ρ∗12 (σy ⊗ σy)

where σy is Pauli matrix, ρ∗12 is conjugate of ρ12. Note
that, when spin-field coupling constant vanishes Ω = 0,
the density operator of two spins ρ12 describes a pure state
as the Hilbert spaces of spin and field are separated. In
this case, the Hamiltonian becomes

see equation (10) above

which is expressed on basis {|φi〉}, not {|Φi〉}. Then
the eigenvalues and the corresponding eigenstates of the
Hamiltonian are:
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ception, when J = 0 (Ising model), the Hamiltonian
is diagonal in this case and the eigenstates are degener-
ated (E0
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3 = −1), and simplified to∣∣ψ0

i

〉
= |φi〉 which are not entangled states any more.

3 Entanglement with antiferromagnetic
coupling

The entanglement depends sensitively on the anisotropy
of the exchange coupling. To clarify this, we examine a
variety of anisotropy regions of exchange coupling.

3.1 J = 0, Jz > 0

This is known as Ising model. Without the external field
the ground state is not entangled, as it should be, while
with the quantized field i.e., Ω �= 0, eigenvalues become

E1 = Jz, E2 = −Jz, E3 = −ζ, E4 = ζ, (13)

with ζ =
√
Jz

2 + 2 (3 + 2n)Ω2 > Jz, the ground state is
|ψ3〉, so that density operator of ground state is
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The reduced density operator of two spins is
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from which the concurrence of ground state is obtained as

C = max {0, 2 |b3,2b3,3| − 2 |b3,1b3,4|}
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It increases with the decrease of spin-field coupling Ω and
tends to equal 1 when Ω approaches 0. However we have
shown that the eigenstates of Hamiltonian are not entan-
gled for Ω = 0, therefore a mutation of entanglement from
1 to 0 takes place at the critical value of the coupling con-
stant Ωc = 0 shown in Figure 1a, which can be considered
as a QPT. In order to show the entanglement behavior
at Ω = 0, the figure is presented symmetrically with re-
spect to Ω̧ (extending to the negative value) in virtue of
the Ω2-dependence of the entanglement, although the Ω is
non-negative. The numerical result with non-zero detun-
ing ∆ is given in Figure 2a, which is quite analogous to the
coupling constant dependence of the entanglement of two
spins driven by a classical field [10], where entanglement
is shown as a function of the magnetic field components,
Bx and Bz .
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(a)

(c) (b)

Fig. 1. (a) Concurrence of the antiferromagnetic XXZ model versus coupling constant Ω for different Jz and J : J = 0 and
Jz = 1 (solid line), J = 0.3 and Jz = 1 (dashed line), J = 1 and Jz = 0 (dash-dot-line), J = Jz = 1 (doted line). (b) Comparison
of two cases for J = 0 (up) and J = 0.001 (down) for Jz = 1. (c) Concurrence of the antiferromagnetic XXZ model versus
coupling constant Ω for Jz ≤ J : J = 1 and Jz = 0 (solid line down), J = 1 and Jz = 0.5 (dashed line), J = 1 and Jz = 0.88
(dash-dot-line), J = 1 and Jz = 0.95 (doted line), J = Jz = 1 (solid line up).

3.2 Jz > J > 0

For the case of vanishing magnetic field i.e. Ω = 0, it is
derived from equation (11) that ground state is

∣∣ψ0
2

〉
and

the entropy of entanglement is of a maximum value, 1.
With the driving field (Ω �= 0), E1 > E2 and E4 > E3

is obtained from equation (3). Given E2 = E3, a critical
value of the Rabi frequency is obtained as

Ωc = 2

√
J (J + Jz)

2n+ 3
. (17)

And, correspondingly,
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√

(Jz − J)2 + 8J (J + Jz). (18)

For the case Ω > Ωc, we obtain E3 < E2, the ground state
is |ψ3〉. The concurrence of ground state is
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which decreases as Ω increasing and ap-
proaches the asymptotic value Ca = 1/2 −√

(n+ 1) (n+ 2)/(3 + 2n). When Ω → Ωc, we have

C (|ψ3〉) → C (Ωc) =
ζc + (Jz − J)
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(a) (b)

(c) (d)

(e)

Fig. 2. Concurrence of the antiferromagnetic XXZ model versus detuning ∆ (x-coordinate) and coupling constant Ω
(y-coordinate) for different J and Jz. Figures a–e correspond to J = 0 and Jz = 1, J = 0.001 and Jz = 1, J = 0.3 and
Jz = 1, J = Jz = 1, J = 1 and Jz = 0.



318 The European Physical Journal D

If Ω < Ωc, then, E2 < E3 and the ground state is |ψ2〉.
The concurrence becomes

C = max {0, 2 |b2,2b2,3| − 2 |b2,1b2,4|} = 1. (20)

A mutation of concurrence from 1 to C (Ωc) takes place
at the critical value of Rabi frequency Ω = Ωc, where Ωc

is a critical point on which QPT occurs.
The concurrence as function of Ω̧ for different ex-

change coupling constants J and Jz shown in Figure 1a.
When Ω = 0, it is shown that the QPT occur in the case
of J = 0 discussed previously, while, a very small cou-
pling constant J can lead to absence (or disappearance)
of QPT. Figure 1b shows the comparison between the two
cases. The numerical results with non-zero detuning ∆ for
different J and Jz are presented in Figure 2. Of course,
the detuning is meaningless when the coupling constant
Ω = 0, while a mutation of entanglement from 1 to 0
takes place, when there is external field with Ω close to 0,
at the detuning ∆ = 2.0 shown in Figures 2a and 2b.

3.3 Jz = J > 0

This case is known as the XXX model. Again the entropy
of entanglement of the ground state is maximum (1 here)
without the driven field. When Ω �= 0, we find a critical
value of the spin-field coupling that

Ωc = 2J

√
2

2n+ 3
, (21)

so that the concurrence of ground state, which is unit 1
when Ω < Ωc, jumps to a value Ca = 1/2 −√

(n+ 1) (n+ 2)/(3 + 2n) (which is independent of the
exchange coupling constant) when Ω > Ωc (see Figs. 1a
and 1c, where field quantum number n = 0, Ca =
1/2 −√

2/3 ∼= 0.0286).

3.4 J > Jz ≥ 0

Without the external field (Ω = 0) ground state is
∣∣ψ0

2

〉
and the entropy of entanglement is 1, which is the same
as previous cases.

However, when Ω �= 0, a more complex structure has
been observed. If Ω < Ωc (Ωc given in Eq. (17)), the
ground state is |ψ2〉 with concurrence C = 1. If Ω > Ωc,
the ground state is |ψ3〉 , and the concurrence is

C =

max

{
0,
ζ − (J − Jz)

2ζ
− ζ + (J − Jz)

ζ

√
(n+ 1) (n+ 2)

3 + 2n

}
.

(22)

According to equation (22), there is another critical point,

Ω,
c =

2
√

(Jz−J)2
[
4 (n+ 1) (n+ 2)+

√
n+ 1

√
n+ 2 (2n+3)2

]

[7 + 4n (3 + n)]
√

(2n+ 3)
,

coming into the consideration. When Ω < Ω,
c, the second

term in the brace is less than zero, therefore, there are
two sub-cases for the concurrence dependent on Ω: (i)
Ωc < Ω,

c and (ii) Ωc > Ω,
c. In the first sub-case, C = 1

locates in the region 0 ≤ Ω < Ωc. When Ω < Ωc < Ω,
c,

the concurrence vanishes and at the critical point Ω =
Ωc, a mutation of the entanglement from 1 to 0 takes
place. When Ω > Ω,

c, concurrence increases with Ω̧ and
approaches the asymptotic value Ca. In the second sub-
case, the concurrence is 1 in the region 0 ≤ Ω < Ωc as
well, and jumps from 1 to

Cc =
ζc − (J − Jz)

2ζc
− ζc + (J − Jz)

ζc

√
(n+ 1) (n+ 2)

3 + 2n

at the critical point Ω = Ωc. When Ω > Ωc, the concur-
rence C increasing with Ω from Cc approaches the asymp-
totic value Ca.

When J ≥ Jz, the concurrence for the general XXZ
model is a function of Ω in the resonance shown as Fig-
ure 1c in which XXX model (J = Jz) and XX model
(Jz = 0) are two special cases. Figures 2b to 2e show the
numerical results of concurrence with detuning ∆ for dif-
ferent Jz and J . These figures are the phase diagrams of
the system with regard to the entanglement, in the white
regions of which the concurrence is 1. In Figures 2c to
2e a mutation of the entanglement occurs on the bound-
ary. This can be considered as a quantum phase transition
occurring on the boundary.

4 Entanglement with ferromagnetic coupling

The dependence of the entanglement on the anisotropy
of the exchange coupling in Ferromagnetic is somehow
simpler than that in antiferromagnetic case. The inves-
tigations have been conducted in three anisotropy cases,
respectively.

4.1 Jz = J < 0

Without the quantized field (Ω = 0), the energy eigenval-
ues are

E0
1 = E0

3 = E0
4 = J, E0

2 = −3J. (23)

and the ground states
∣∣ψ0

1

〉
,

∣∣ψ0
3

〉
and

∣∣ψ0
4

〉
are degener-

ated. The entropy of entanglement of the ground states
are E(

∣∣ψ0
3

〉
) = 1, and E(

∣∣ψ0
1

〉
) = E(

∣∣ψ0
4

〉
) = 0. With the

driving field (Ω �= 0), the ground state is |ψ3〉, and the
concurrence is given by

C =
1
2
−

√
(n+ 1) (n+ 2)

3 + 2n
, (24)

which is independent of the coupling parameters. The mu-
tation from 1 to C = 1/2−√

(n+ 1) (n+ 2)/(3 + 2n) oc-
curs at the critical point Ω = 0 shown as Figure 3a.
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(a)

(b)

Fig. 3. (a) Concurrence of ferromagnetic XXZ model versus
coupling constant Ω for different J and Jz (|J | ≥ |Jz|): J =
Jz = −1 (solid line), J = −1 and Jz = −0.9 (dashed line), J =
−1 and Jz = −0.5 (doted line), J = −1 and Jz = 0 (dash-
dot-line). (b) Concurrence of ferromagnetic XXZ model versus
coupling constant Ω for different J and Jz (|J | < |Jz|): J =
−0.99 and Jz = −1 (solid line), J = −0.9 andJz = −1 (doted
line), J = −0.5 and Jz = −1 (dashed line), J = 0 and Jz = −1
(dash-dot-line).

4.2 J < Jz ≤ 0

When Ω �= 0, the ground state is |ψ3〉 obtained from equa-
tion (3). The concurrence is the same as equation (19).
The Ω-dependence of the concurrence is shown in Fig-
ure 3.

4.3 Jz < J ≤ 0

When Ω = 0, we obtained the eigenvalues from equa-
tion (11)

E0
1 = Jz , E

0
2 = −Jz−2J, E0

3 = −Jz+2J, E0
4 = Jz, (25)

ground state is
∣∣ψ0

1

〉
or

∣∣ψ0
4

〉
either of which is not entan-

gled state. When Ω �= 0, eigenvalues become

E1 = Jz, E2 = −Jz − 2J, E3 = J − ζ, E4 = J + ζ, (26)

(a)

(b)

(c)

Fig. 4. Concurrence of the two-qubit ferromagnetic XXZ
model versus detuning ∆ (x-coordinate) and coupling constant
Ω (y-coordinate) for different J and Jz . Figures a–c correspond
to J = Jz = −1, J = −1 and Jz = 0, J = 0 and Jz = −1.
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with ζ =
√

(Jz − J)2 + 2 (3 + 2n)Ω2 > |Jz − J | =
(J − Jz), the ground state is |ψ3〉, and the concurrence
is the same as equation (22). The Ω-dependence of con-
currence is given in Figure 3 for the resonance case.

Figure 4 shows the contour line of entanglement as a
function of detuning ∆ and Rabi frequency Ω. Figure 4b
is similar to the antiferromagnetic case (see Fig. 2b, and
a mutation of entanglement from 1 to 0 takes place at the
detuning ∆ = 2.0 coupling constant Ω close to 0, too.

5 Conclusion

In summary, the spin-field coupling dependence
(Ω-dependence) of the entanglement in the XXZ
model possesses a rich structure, sharing in many ways
with the properties of QPT. It is similar to the semiclas-
sical case but more complicated properties are observed
via purity quantum discussion. The entanglement-denote
QPT varies with anisotropic exchange-coupling constants
J and Jz for the antiferromagnetic case, which is of
fundamental interests in the quantum information and
computing.

This work was supported by the Natural Science Foundation
of China under Grant No. 10475053.
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